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ASSTRACT

The role of anharmonicity in the dynamics OS DNA at bio-
logical temperatures is currently discussed by many authors.
Here results obtained by a To& lattice model of the nml-
ecule in Refs. 1-4 are summarized.

Introduction

In recent yearn tho poanibility that enharmonic excitation could
;::;af-f?le ir!the dynamica of DNA ham been conoidere by several au-

1. Furthsr rafarmcos aro given in Muto et al, . It has been sug-
qemted that aolitonamay be genaratad thmnnally at biological temperatures.
However, thie qumation im far fr

?j~~~~ge~~ttlad at
tho premnt tim and

can ha described as controvcraial ‘. The donaturation of the
DKA doublo helix ham bsan in u gatod by etatietical machanicn methods

K%!+and by dynamical aimulation~ . Hara tha potontlal for tho hydrogon
bond in each basa pai~ ia approximated by a Moree potential.

In the premnt papm we describo tho Toda lattlca mod-l of DNA in-
troduced in Rafs. 1,2.’T@mpmratura ●ntmrm via the initial condition and
through a perturbation of tha dynamical aquationm. Th@ m ●l la refined

9by introductionof tranrnvormalnmtion of tha Toda lattice and by trana-
vereal cou Iinq of two lattican in the hydrogen bonds prasant in tha

8basa pair- . Using Lennard-Jonempotontialm to modal them bonds wo ara
abla to obtain re~ulta concaraing tt,iopan stath~ of DNA at biological
temperature.

The Toda Lattico Model

Ths Toda lattlcolB?19 conoieta of N maseoa (each of mamem) with
lonq~tudlnal dieplacemanta from ●quidintant quillbrium poeltlonn given
by yn(t) (n 9 1,2,‘oO,N) as a function of time.
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Figure 1. Lattice with longitudinal and transversal degrees of freedom.

Fig. 1 illustrates the case where both longitudinal and transversal
displacements, given by yn(t) and vn(t) respectively, n = l,2,00-,N, are
possible. !2is the lattice constant. The masses are connected to their
nearest neighbors with nonlinear springs of potential V(yn+l - yn) when
only longitudinalmotion is all~wed. In this case Newton’s second law
becomes

myn = V’(yn+l - yn) - V’(y
n ‘Yn-l) , n=l, ---,N (la)

where the dot indicates a time derivative and the prime indicates a de-
rivative with respuct to the argument. For the Toda lattice the nonlin-
ear spring potential is

wYn+l - Yn) = ~q exp [-b(yn+l - Yn)] + a(Yn+l - Yn) (2)

where a and b are arbitrary parameters.
In the model each mass represents a single baae ?air, and the non-

linear spring represents the potentihl between adjacent baee paira (of
bott,DNA strands of the double helix in tha simple model).

The most realistic potential function between the base
generalized van der Waala function

ti(yn+l-
A B

Yn) “
(t-yn+l-yn)p (l+Yn+l-Yn)q

pairs is the

. (3)

Equating polynomial coefficients of V and ~ up to
%%

ordar gives b =
(p+g+3)/iwhere 1 - 3.4A. Withp = 12 andq = 6“ ‘ we get

b - 6.18 x 1o1” m“l , (4)

Near the minimum (ynAl - Yn = O), !%. 2 reduces to a harmonic potantial
with a spring force constant k = ab. Experime tal moasuremunts cf the
sound velocity of DNA (J?fi - 1.69M l~s m/s) h then require

a. 5,13 x 10”10N , (5)

m being the ma~m of the base pair, m s 1.28 X 10”* kg22’23,
In a cyclic arrangement of tho N massam, corresponding to a closed

DNA molecule, we una thm periodic boundary condition

Yn+tp=yn(t) , (6a)
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suit thi+4i~&tialvalue problem for the infinite lattice can be solved
exactly - . In particular, solitcms are specified by bound states far
which the corresponding eigenvalues are greater than + 1 or less tl,~n
- 127,28 A simple and effective method for counting the number of sol-
itons29 ~as been described and used in Refs. 1,2, as we shall see in
the following sections.

Thermalization of the Simple Model

In order to thermalize the sys’.emwe first assume1 that there is a
total energy approximately equal to kBT initially in the system. (Here
kB is the Boltzmann constant and T is the absolute temperature.) This
is clearly an approximation since, at thermal equilibrium, the average
kinetic energy is equal to ~k9T, while the potential energy differs from
\kBT in a nonlinear system. Assuming, nevertheless, that all masses have
gaussian random displacements from their equilibrium positions and
gaussian random velocities such that the total energy is equally shared
between kinetic and potential energy we get the number of solitons, NS,
versus temperature shown in Fig. 2. Here the soliton counter is applied

o 1 I 1 I 1 I 1 1’
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Figure 2. Logarithm of NS/N versus logarithm of!T measured in K. Kinetic
and potential energies equal to ~kBT. The bullet (*) indicates biologi-
cal temperature.

directly to the initial data for the unperturbed ToGa lattice. The point
indicated by bullet (.) correspond to T a 310 K and gives NS/N = 0.35.
At high temperatures NS +N as expcted. At lower temperatures (T < 100 K)
t,h,anumber of solitons is proportional to T1’s,Ahnoet similar reeults
were found when the initial en~rgy of the system was e~t

M
r completely

kinetic or completely potential. 1[1an unpublished paper Schneider and
Stoll, using the ideal aoliton gas appA’oximation,also found a T1’J-law



31 their analys:for NS. However, according to Bolterauer and Opper “s con-
tains a mistake in the consideration of canonically conjugate varmbles.
Vertens and Bi!ttner32’33,using action-angle variables for the Toda lat-
tice, find NS ‘ T at low temperatures. The discrepancy may be due to

5
the act that not only solitons, but also enharmonic phonons are coun-
ted3 ,33.

A second approach to thermalization2consists in describing the in-
teraction of the DNA molecule with a thermal reservoir at a finite tem-
perature through Langevin equations34’ ‘“9”. Thus a damping force and a
noise force

Fn=-mAin+vn(t)

are added on the right-hana side of the dynamical equations, Eq. la.
Here A is the damping coefficient and qn(t) is the random force with
correlation function

<qn(t) qn,(b’)> = 2mA~T6nn, a(t-t’)

(7)

(8)

in the case of white noise. The coefficient, 2mAk T, in front of the
Kronecker delta, dnn*, and Dirac’s delta functio@(t-t’), is chosen in
accordance with Fluctuation-dissipationtheorem . Assuming that the
damping is stiply due to the viscosity of the water surrounding the DNA-
molecule representativevalues of the damping coefficient are A =
d,C15d- (correspondingto approximately critical damping) and A =
3 J’= (correspondingto overdamping). By integrating the perturbed dy-

0 5I
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Figure 3. /N versus logarithm of T measured in K for clsm-
3, 0,8s indicated by circles, Sw-s and

trianglee. Full curve obtained by thermalized initial data: Kinetic en-
ergy equal to kBT, potential energy wu~l to o-



narnicalequations, Eqs. la and 7, until thermal equilibrium has been
reached and then using the soliton counter on the resulting solution we
obtain curves for NS versus T as shown in Fig. 3. For different values
of a we get good agreement with the results obtained by the first ap-
proximation where the thermal fluctuations are present only in (the kin-
etic energy of) the initial data. Thus NS =0.31 NatT=310K
NS a T1/3 for T < loo K.

Thus both of the two thermalization approaches demonstrate
significant number of salitons, approximately 1/3 of the number
pairs, are gener~ted at biological temperature.

Toda Lattice with Transversal Degree of Freedom

and

that a
of base

gree 2 ~~~~~~~efine

the model we first introduce a transversal de-
AS a result we get the dynamical equations

Here the

Periodic

arn arn ~

myn = - V’(m, — -ayn V’(rn-l) * (lb)

arn ar
mV = - V’(m, ~ - V’(rn-l) # .

n n n

,n=~, 2,0- ”,N,

potential V is still given by Eq. 2, and

r = J(i + Yn+l - Yn)’ + (Vn+l - V*)’ - L .n

(lC)

(9)

boundary conditions for longitudinal and transverse displace-
ments are

‘N+n(t) = yn(t) , ‘N+n(t) = Vn(t) . (6b)

In order to derive continuum approximations for the lattice
?Y’?+i:;:’Eqs. lb-c, we follow Collins, Rosenau, and Hman and Rosenau

showed that

where T is a nonlinear function of fn(t) + f(x,t) s f(n~,t) in the con-
tinuum limit n + 00,Q + 0, nt = x. In ths case wt,erethe longitudinal
strain un S (y

n+l,.
- yn)/t 1s of tho same ordsrof magnitude as

versal strain w = (Vn+l -
n Vn)/k we obtain (see also Ref. 38)

P. ~ (u’)xX+$ (“’)= +:% ’’mtt
a ‘ltt“ %cX - 2

f? “ 13(uw)= +
Q~

6 ‘tt a 12 ‘xxtt

(n the Bouseinesq approximation where

[

(brn)’ (brn)’

V(m, * ~ -—---- ----2 16“

the trans-

(lla)

(llb)

(12)



Here p s KI/~= 3.77 x 10-M kg/m and ~ = lb = 21 in the case of DNA. Ex-
act traveling wave solutions to Eq. 11 @f the form

w.? CUT%, (13)

for infinite and finite length of the molecule, are found in Refs. 3 and
39. The numerical simulations of this hybrid traveling wave (with in-
itial velocity s = 1.5) is shown in Figs. 4 and 5 in the discrete case,
Eqs. lb-c and the continuum case, Eqs. ha-b. In the discrete case rather

time

site 2%
o

time

78

site 2W

Longlludlnalcompomn ofvdoctty Transversal componentof velouty

~5 ~=
o 59

Figure 4. Gray-scale plot of (a) longitudinaland (b) transversal vel-
ocities, in(t) and on(t), vsrsus s~te n and normalized time t. Disper-
nlon occurs at t = 3.

strong dispersion occurs while in tho continuum case blow-up occurs in
th longitudinal componant after a finite time. (In the latter case the
hyblid wave remaine stabia for smaller valumm of the initial velocity
e (s> l).)

i{aconclude that deepita tho fact that the hybrid wave may not be
stable tt,8longitudinal soliton-like excitation travalm along the mol-
eculo for extended periods of time, also in the presanc~ of a transver-
sal dearae of freedom.



Two Coupled Toda Lattices

Finally, we consider4 two strands cf
hydrogen bonds in the base pairs as shown

o length
512

DNA coupled together via the
in Fig. 6. The potentials

n length Gt 9
0

9

Longitudinal component of$tram Transversal component of strain

~~
..2 0 1,44 0 41

Figure 5. Grey-scale plot of (a) longitudinaland (b) tr,lsversal
strains, u(x,t) and w(x,t), versus no~a~ized distance x INIdtime t“
Blow-up (black lines) occurs in the longitudinal component at t = 9.
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v T,l

Figure 6. DNA
Lennard-Jones
two strands.

double hel!.x.Two identical Toda chains are connected by
potentials representing the hydrogen bonds between the



along the strands, V and VT ~ , are Toda potentials of the form of
Eq. 2. The hydrogen ~6;ds are ho~elled by Lennard-Jone.spotentials, VLJ,
of the form of Eq. 3 with p = 12 and q = 6. The main result of the in-
vestigation is shown in Fig. 7 illustrating the averaged life-time of
the open states versus temperature T. The open state of a hydrogen bond

.—
L,’
II 1

k

l-- ● —.
L ●

● 4

● *

~ ● *

l-- -+

100 200 300 400
T (K)

Figure 7. Averaged life-time of open states versus temperature T.
Bin 3 - 17 psec: open symbols.
Bin > 18 psec: stars.

occurs when the transversal distance between the bases in a pair is
bigger than 4 ~. TG cbtain Fig. 7 we divide the open states in three
bins. The first bin contains open states with a life-time shorter than
3 psec. These states are not considered in the calculations of the av-
eraged life-times. The second bin contains open states with life-times
3- 17 psec. The averaged values of this group are shown in Fig. 7 as
open symbols. Finally, the third bin contains the open states with a
life-time longer than 18 psec. These averaged values are plotted by
stars. The figure clearly shows that for temperatures larger than T =
250 K, the presence of open states which last for more than 20 psec is
significant.

Thus we concllde that anharmonicity may play a role in the DNA de-
maturation.
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